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ABSTRACT

As reported by Dr. Richard Morris in March, reflectance

spectra of iron (III) oxide precipitated as ultrafine (x-ray

amorphous) particles, unlike ordinary fine-grained (>100 nm)

hematite (_-Fe203) , have significant similarities to

reflectance spectra from the bright regions of Mars. During

this summer's stay at JSC, I have collaborated with Dr.

Morris to characterize these particles according to

composition, magnetic properties, and particle-size

distribution. Mossbauer, magnetic susceptibility, and

optical data have been obtained for samples with a range of

concentrations of iron oxide in silica gel of varying pore

diameters (6, 15, and 30 nm). To analyze the Mossbauer

spectra, I have enhanced a versatile fitting program (adapted

during last summer's ASEE visit for the IBM-PC) to provide

user-friendly screen input and theoretical models appropriate

for the superparamagnetic spectra obtained.

NASA Colleague: Richard V. Morris, Ph.D., SN4, X5874
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INTRODUCTION

In March of this year [Morris and Lauer, 1986], Dr.

Richard Morris reported that hematite formed by calcining

silica gel impregnated with ferric nitrate solution provided

a material with spectra similar to reflectance spectra

obtained from the bright regions of Mars. The hematite has

an ultrafine particle size because of the small pore size (6-

30 nm) of the silica gel matrix in which it is prepared.

Further work in Dr. Morris' laboratory at JSC has been aimed

at producing a variety of samples of this material in gels of

various pore sizes and under varying conditions of

temperature of oxidation, pH, starting reagents, etc., in

order to produce the material with the best match to the Mars

spectrum. Other techniques are employed to further

characterize the properties of these martian soil analogues

and to determine the magnetic properties, chemical

composition, size distribution, etc., of the particles of

which this material is made.

One of the tools employed by Dr. Morris in this effort

is Mossbauer spectroscopy. In this technique, a spectrum is

obtained by allowing radiation emitted from a moving source

of 14.4-keV gamma-rays from 57Fe (about 2% of natural iron)

to pass through the material (absorber) under study. This

transmission spectrum is obtained in a multichannel analyzer

as a plot of number of gamma-ray counts detected versus the
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velocity of the source (i mm/s corresponds to an energy shift

of 4.8x10 -8 eV) [for example, Figure i]. The spectrum is

analyzed by computer fitting a theoretical function to the

data and interpreting the fitted parameters in terms of the

environment of the iron atoms in the absorber material.

In the present study, spectra generally consist of a 6-

peak magnetic spectrum superimposed on a 2-peak paramagnetic

spectrum [Figure 2]. The simplest interpretation of the

spectra observed is that the iron atoms are in two chemically

distinct sites, one of which results in a magnetic field at

the iron nucleus. However, it is well-known that iron oxide

particles < 30nm in diameter exhibit superparamagnetism

[Kundig et al., 1966]. In this report, the phenomenon of

superparamagnetism will be discussed and applied to the

silica-gel oxides to obtain useful information about the

particle-size distribution in these samples.

In continuing with the adaptation for the IBM-PC of the

Mossbauer data least-squares fitting program [Agresti et al.,

1969] begun last summer [Agresti, 1985], I have attempted to

provide a more user-friendly screen input and fitting models

particularly suited to the Mossbauer spectra obtained on the

martian soil analogues. In this report, several of these

enhancements will be described and illustrated by application

to spectra obtained in Dr. Morris' laboratory.
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SUPERPARAMAGNETISM

As stated in the introduction, iron oxide formed in

silica gel may be superparamagnetic. The samples obtained

generally have Mossbauer spectra with a 6-peak magnetic

component, which implies the presence of a magnetic field at

the nucleus (31.15 kOe per mm/s of splitting between the

outer pair of lines), and a 2-peak paramagnetic component,

which implies the absence of a magnetic field, or more

properly, a zero time-average magnetic field. The 2-peak

splitting results from the distortion of the local

environment of the iron atom from cubic symmetry.

Superparamagnetic particles are so small that the magnetic

anisotropy energy, which is proportional to volume, is not

sufficient to maintain the domain magnetization pointing

permanently in one of several possible easy directions in the

crystal, and the magnetizetion flips among easy directions

with a frequency related to the thermal energy, kT. The

reciprocal of this frequency, the relaxation time, to , is

proportional to the Maxwell-Boltzmann weighting factor:

to cs: exp (2KV/kT), (i)

where K is the magnetic anisotropy constant and V is the

volume of the superparamagnetic particle.

In order for a magnetic field to be observed at the

nucleus (resulting in a 6-1ine pattern), to must be long

compared to the time of observation, tobs; a 2-1ine pattern
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will appear when t o is much shorter than tob s. The time,

tobs, is necessary to establish the value of the field at the

nucleus, and, from the Heisenberg uncertainty product, is

equal to the nuclear level splitting resulting from the

magnetic field divided by Planck's constant, _. (For the 500

kOe fields of _,-Fe203, tob s is approx, equal to 2.5x10 -8

sec). Thus, from the spectrum shown in Figure 2, our sample

consists of a distribution of particle sizes, the smaller

particles being associated with the doublet and the larger

particles with the sextet. The area under each of these two

components of the spectrum is proportional to the number of

nuclei, that is, the total volume, in each size regime.

To obtain a size distribution, and also to confirm the

supermagnetic nature of our samples, it is necessary to

collect Mossbauer spectra over a range of temperatures.

Figure 3 shows a series of Mossbauer spectra collected down

to 22K on a silica gel sample supplied by Dr. Morris. These

were taken by my graduate student and NASA Graduate Trainee

Jeffrey Newcomb at UAB. In the figure, it is seen that there

is a steady increase with temperature of the 2-peak component

at the expense of the 6-peak component.

To explain this effect, we point out that Equation (i)

shows that t o depends on temperature as well as on particle

size. In fact, the exponential dependence implies a fairly

sharp transition as a function of temperature, for a given

particle volume V, between a 6-peak and a 2-peak contribution
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to the spectrum. From another point of view, for each

temperature there is a transitional volume, Vt, that divides

the distribution into two parts. For V > Vt, the particles

contribute to the 6-peak component; for V < V t, to the 2-peak

component. Kundig et al. determined that the anisotropy

constant, K, for hematite is approximately independent of

temperature and gave a value of (4.1 _ i) xl0 4 erg/cm 3.

With this value and the requirement that the relaxation time,

to, for particles of volume, Vt, be approx. = tobs, Equation

(1) may be transformed [from Eq. (8), Kundig et al., 1966] to

the more convenient form,

V t = [(4.7 _ i) nm 3] T. (2)

The spectra of Figure 3 were fit to determine the

relative area of the 2-peak component. Figure 4 is a graph

of the results with a smooth curve drawn through the data.

The curve may be understood to be proportional to the

integral of the distribution, dN(T)/dV, which is the number

of particles having volume in the range between V t and Vt+dV ,

since this integral from zero K to the temperature, T, is

equal to the total volume of particles with V < V t.

Hence, the derivative of the curve, under the assumption of

constant K, gives directly a volume distribution, which may

be calibrated according to Equation (2). This distribution

may be converted into the desired size distribution if we

assume the particles are uniform spheres, as has been done in

Figure 4.
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THE COMPUTERPROGRAM

The major portion of my effort this summer was devoted

to enhancing the computer program [Agresti et al., 1969]

used to analyze the Mossbauer data. The resulting program,

along with future enhancements, will be designated

"VersiFit." Last summer, the program was implemented on an

IBM-PC, but, as mentioned then [Agresti, 1985], a number of

modifications remained to be made. Five such enhancements

will be described here in order to illustrate the range of

modifications involved: These are: I. Interactive screen

input; 2. Plotting of data and fitted function; 3. Laser

velocity calibration; 4. Marquardt minimization procedure;

and 5. Skewed-Lorentzian peak functions.

i. Interactive screen input. Sample input screens are

shown in Figure 5. Other input screens are provided or

anticipated for input of relations among parameters, data and

velocity definition, plotting requirements, etc. The basic

idea is a complete break with the fixed-sequence input

typical of mainframe computers. It is not only interactive,

but dynamic in the sense that the user decides which

information to provide through the use of the cursor controls

to position the response in the correct box and through the

selection of particular entry screens that contain the items

required. Furthermore, the individual entry screens re-form

themselves in response to earlier input, as shown by the
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three screens of Figure 5. It is hoped that this more user-

friendly type of input coupled with implementation on a very

popular and very powerful microcomputer will ease the

adoption of the program among the mineralogical community.

2. plotting of data and fitted function. The PC used

this summer is configured with a graphics printer, a

monochrome monitor used for text and numerical input and

output, and a high-resolution (640x200) graphics monitor used

to display graphs of data and fitted function. This

arrangement has proved very helpful when analyzing data. The

visual display of data and function on the same graph

[Figures 6,11,12] is of course much more helpful for

inspecting the quality of the fit than merely noting, for

example, the value of chi square (_2). But it is also

useful for making good choices for starting values of

parameters in the fit, as are plots of deviations between

data and function [Figures 7,8]. With a graphics printer

connected, immediate hard-copy output may be obtained for

later reference or publication.

3. Laser velocit_ calibration. As described in the

introduction, the spectrum is acquired in a multichannel

analyzer with a moving source of radiation. The drive

produces a velocity designed to be linearly proportional to

channel number; thus, v i = m x (i - 256.5), where m =

velocity increment (mm/s) per channel and i ranges from I to

512, the number of channels. In order to obtain a precise
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value for the velocity of the source, a laser is mounted

parallel with the motion of the source and interference

fringes are counted and stored as a function of channel. The

number of fringes produced is accurately proportional to the

distance covered during the period of time a channel is open,

hence to the absolute value of the velocity. Figure 9 is a

typical laser calibration run, associated with the data of

Figures 1,2,11,12. The calibration data show that the

velocity is not strictly linear, but is better represented by

a "bilinear" function, v i = mI x (i - io) for i < i o, and

v i = m2 x (i - io) for i > io, where mI and m2 typically

differ by 1%, and i o, which corresponds to the zero-velocity

channel, is generally not equal to 256.5.

4. Marquardt minimization procedure. As noted in last

summer's report [Agresti, 1985], the standard non-linear

least-squares fitting procedure, employing Taylor's

approximation for the function, is not always successful in

obtaining a minimum in _2, defined as

1 _ (Yi - fi) 2
= - (3)

(Nd - Np) _ (_i 2

where N d is the number of data values (channels), Np is the

number of parameters varied in the fit, and _i is the

standard deviation in each data value. When parameters are

strongly correlated, as the peak positions of Figure 6,

where the peaks strongly overlap, say in fitting with two or

three overlapping doublets, then often this procedure will
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produce an increasing _2 from iteration to iteration. A

different approach [Marquardt, 1963] combines steepest

descent with Taylor's approximation in such a way that the

change in the parameters is neither Taylor nor steepest

descent but a linear combination of the two. The linear

combination is optimal in that the fit converges to a minimum

in the least number of iterations. According to theory, the

fit will converge, even when parameters are strongly

correlated. To illustrate this, Figure 10 shows the

variation in _2 for 6-peak fits to the data of Figure 6 with

two sets of starting parameters and minimization by the

Taylor or Marquardt procedure. Started close to the minimum

in X 2 of 0.966, Taylor is very sluggish compared to

Marquardt; started farther away, it diverges, while Marquardt

proceeds monotonically downward.

5. Skewed-Lorentzian peak functions. Figure 1 shows a

spectrum of pure, bulk hematite. Each component peak is

symmetrical in comparison to those of Figure 2. In order to

accurately fit the areas, a satisfactory shape function must

be supplied that will successfully reproduce the shape of the

data. In the case of hematite and many other particularly

well-defined crystal structures, the appropriate theoretical

function is a Lorentzian, given by:

where v o

Area x 2 / (_ W)

L(v) = , (4)

1 + [2 (v - Vo) / W ]2

is the velocity position of the peak (more
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accurately, dip) in the transmission spectrum, and W is the

full-width at half maximum. Figure ii shows a fit of the

data of Figure 2 to a superposition of 8 Lorentzian peaks,

with areas and widths constrained in pairs, resulting in 18

variable parameters. The value achieved for X 2 is 8.98, and

it is easy to see that the fitted function misses a great

deal of the data. From the above discussion, it is evident

that we must account for the asymmetry in the 6 magnetic

peaks. The function I have chosen, for computational

simplicity, may be termed a "skewed" Lorentzian. It has an

additional parameter, ;, the "skew," and is defined

(assuming _ > i) by contracting the half-width to .5 W /

on one side of the vertical midline of the Lorentzian

function and expanding the width to .5 W x _ on the other

side. Figure 12 shows the fitted function obtained with the

6 magnetic peaks skewed in pairs. The final value of _2 has

dropped to 1.35, a dramatic improvement for the addition of

just 3 additional variaDle parameters.

In summary, improvements in the capabilities for

analysis of Mossbauer spectra of martian soil analogues have

been provided as a modification of an existing least-squares

program, whose ease of input and variety of fitting options

and models, hence VersiFit, should be of value to those in

the wider scientific community who wish to employ desk-top

computers in their data analysis.
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ORIGINAI_ PAGE IS

OF POOR QUALITY

STARTING A NEW FIT . . Oate: 8/20/86 Time: 1:32:18 PH

9a',a _:_e name... O00206.dat

C_e_cr tioe e×periment .....

Demcr,be the fit ........

Peak to peak uel ... 7.6500

PSAME... F YS_E... F R_NDOH.. F

No. of indep peaks ..... 0

Data pts... 512 Half (lor2> .... i

Overflow .... 0 Output file... F
NOSUM... T NOFIT... T NTCYC... 15

No. sites in hf model.. 2

Parameter values:

BacXground, B ....... 5907

Area, AREA ...... 7.9716
Rel site areas .......... 1.0000

center shifts, CS ....... 2600

quad pap ams, GQ ...... 1.4800

mag. params, GH ....... 0000

g-exc / g-gnd, GOUG ...... O000

equal widths, W ........ 5000

Fixed paeaums ....... DEAD

Parab background corr., GEOM...
1.0000

.4500

4.8600

,0000

DEAD DEAD DEAD DEAD DEAD DEAD DEAD

.0000

STARTING A NEW FIT Date: 8/20/86 Time: 1:26:29 PM

Data file name... 00020_.aat

Describe exper,ment .....

Describe the fit ........

Peak to peak vet... 7.6500
PS_PIE... F fS_ME... F R_DGM.. F

No. of indep peaks ..... 2

Data pts... 512 Half (loP2) .... I

Overflow .... 0 Output file... F
NOSUH.o. T NOF|T... T NTCYC... 15

No, sites in hf model.. 0

Parameter values:

Background, B ....... 5907

Area, AREA ...... 7.9716 Parab background corr., GEOH .... 0000
Peak positions, EU ...... -.L480 .6090

rel. areas, _ ..... ". .5120 .4880

hall'-widths, WIU ....... 6930 .6420

fraction Gau., FC_U ..... 0000 .0000

equal widths, W ........ 0000

Fixed parades ....... AREA DEAD DEAD DEAD DEAD DEAD DEAD DEAD

4

STARTING A NEW FIT . . Date: 8/20/86 Time: 1:21:24 PM

Cata f i l e name... O00206.dat

Oescr i be experiment .....
Describe the fit ........

Peak to peak uel ... 7.6500

PSAME... F YSAME... T RANDOM.. F

No. of indep peaks ..... 4

Data pts... 512 Half (loP2) .... I

0uer_lo_a .... 0 0ut_ut Zile... F

N0$UH... T NOFIT... T NTCYC... 15

No. sites in hf model.. 0

Pap _e ter u&lues:

Background, B ....... 5907

Area, AREA ...... 7.9200

Peak positions, EV ...... -.1100

tel. areas, HU ....... 4000

half--_idths, WU ....... 5000
fraction Gau., F_U ..... 0000

equal widths, W ........ 0000

Fixed params ....... AREA DEAD

Par&b background corr., GEOM...
.6300 -.7700 1.6600
.4000 .0500 .0500

• 5000 .5000 .5000

.0000 .0000 .0000

DEAD DEAD DEAD DEAD DEAD DEAD

.0000

Figure 5. Examples of screen input to the program.

The screens re-form as shown in response to entries for

"No. of indep peaks" and "No. of sites in hf model."
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Iteration _2 by Taylor's _2 by Marquardt

Start 1.126 1.126
1 1.114 1.054
2 1.103 1.010
3 1.094 0.997
4 1.086 0.990
5 1.079 0.987
6 1.072 0.985

Iteration _2 by Taylor's _2 by Marquardt

Start 32.622 32.621
1 18.319 5.833
2 9.957 4.676
3 5.847 1.333
4 1.508 1.240
5 1.483 1.078
6 1.566 1.051
7 1.555 1.023
8 1.541 1.021

Figure 10. Variation of X 2 for the first few
iterations in fitting 6 peaks to the data of Figure 6 by
Taylor's or Marquardt procedure. In the upper table, the fit
was started relatively close to the minimum of 0.966. In the
lower table, the fit was started farther away from the
minimum.
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